Computer Science
Gilmour AcademyLancerTech
  • Our Curriculum and Department
  • Intro to Programming
    • 1: Parts of a Computer
    • 2: Parts of Python
    • 3: DRY Turtle
    • 4: Turtle Design App
    • Wordle with Turtles
    • 5: Interactive Turtles
    • OLD 5: Replit, GitHub, and repositories (Oh my!)
    • 6: Raspberry Pi / GoPiGo
    • 7: Kivy
  • Intro to Web Design
    • 1: Internet?
    • 2: Websites?
    • 3: Bootstrap Template
    • 4: Graphics and Branding
    • 5: Collaboration
    • 6: Advanced Editing
    • Publish Static HTML
  • AP Computer Science
    • 1: Logic & Instances
    • 2: How Java Works
    • 3: Data Types & Flow
    • 4: Strings
    • 5: Objects & References
    • 6: Inheritance & Algorithms
    • 7: Data Structures
    • 8: Sorting
    • 9: Review
    • Data Science
  • Web App Dev
    • 1: Core Concepts
    • 2: MVT Pattern
    • 3: Hello Flask
    • 4: Install Flaskinni
    • 5: Tour Flaskinni
    • 6: Visualize Your App
    • 7: Theme & Blueprint
    • 8: Standup Your DB
    • 9: Advanced Topics
    • 10: Deployment
  • 2D Game Design
    • Class Overview
    • Gamemaker Studio 2 and Github Setup
    • Game 1: Bouncing Ball
    • Turning in your games
    • Game 2: Maze
    • Game 3: Ping Pong
    • Game 4: Breakout
    • Game 5: Tank Battle
    • Game 6 Highlights
    • DO NOT DO:
    • Game 7: Final Project
    • Publish to Opera
    • FAQ
  • 3D Game Design
    • 1: Class Overview
    • 2: Installation
    • 3: Exploring the Unity UI
    • Game 1: Rolling Ball
    • Game 2: Tanks
    • Game 3: Third Person Platformer
    • Game 4: Final project
    • FAQs
    • OLD: Distance Learning Setup
    • OLD: GIT
  • 3D Modeling & Fabrication
    • Installation
    • Fusion 360 Interface and Sketch Modeling
    • Primitive Modeling
    • Patterns
    • Appearances and Rendering
    • Building Community Gallery Page 2023
    • Parametric Modeling
    • 3D Printing Concerns
    • Assemblies and Mechanical Design
    • Laser Cutting
    • Sculpt Tools
    • Milling Concerns
  • Robotics 7
    • Software Installation
    • Python basics (trinket.io)
    • Python Turtle
    • Programming for the Ev3
    • Setting up for clarity
  • Robotics 8
    • Replit
    • Python review
    • Kivy Basics
    • Calculator
  • Competitive Robotics
    • Hardware Team
      • CAD Examples
      • Elevators
    • Software Team
      • Command Pattern
      • Example Command
      • Subsystem
      • Running Your Code
      • Under the Hood
      • RoadRunner
      • Vision Processing
  • Archives
    • Adiletta Archives
      • Old Web
        • Ex: WordPress CMS
      • ItP
        • OLD: Parts of Python (old -- Mr. A)
        • OLD: 5: Raspberry Pi
        • OLD: 6: Deploying Code
        • OLD 7: Nav Algorithm
    • Vanek Archives
      • OLD Robotics 8
        • OLD: End of Class Project
      • OLD Competitive Robotics
        • Untitled
        • Webots Videos
      • OLD Robotics 7
        • Trinket Introduction
        • Lists: x/y position
        • Functions: Math program
        • Lists: Grocery List
        • Study Guide Program
        • Tic Tac Toe Game
        • Dice Roller Program
        • Visualization
        • Dice Roller + Visualization
        • OpenSCAD: Installation
        • OpenSCAD: Command Sheet and Intro
        • OpenSCAD: Difference
        • OpenSCAD: Variables
        • OpenSCAD: Union
        • OpenSCAD: For Loops
        • OpenSCAD: Final Project
      • OLD Art I - Blender Sculpting
        • Class Overview
        • Installation
        • Lesson 1 - Tools
        • Lesson 2 - Detail
        • Lesson 3 - Base Mesh: Metaballs
        • Lesson 4: Converting metaballs and adding detail
        • Lesson 5: Masking, Hiding, and Working with Multiple Objects
        • Lesson 6: Joining Objects & Basing
        • Lesson 7: Sculpture Painting
        • Student Gallery: Animal Sculpts
        • Lesson 8: 3D Compositon
        • Lesson 9: The Project - Putting it all together
        • Lesson 10: Developing the image further
        • Lesson 11: Layout the base metaball mesh.
        • Lesson 12: Final Detail
        • Lesson 13: Basing and Painting
        • Final Project Gallery
      • OLD Fab
        • OLD Building Community Project Gallery
        • Copy of Building Community Project Gallery
        • old Building Community Project Gallery
      • OLD: Turtle Design App
      • OLD Arduino Robotics 8
        • Arduino Basic Commands Cheat Sheet
        • Logging into Tinkercad
        • Arduino, Circuits, LEDs and Resistors
        • Functions and Variables
        • Serial Monitor
        • Buttons and Interrupts
        • Traffic Light Project
        • Potentiometers + Servos
        • Piezo Buzzer and Tone();
        • Sequencer Project
        • Arrays and for loops
        • Extra Loop Practice
        • Refining the Sequencer
        • Servos
        • Ultrasonic Sensors
        • Final Project
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Archives
  2. Vanek Archives
  3. OLD Robotics 8

OLD: End of Class Project

PreviousOLD Robotics 8NextOLD Competitive Robotics

Last updated 3 years ago

Was this helpful?

For the last two days, we will be working on our final project.

Over the course of the quarter, we have learned:

  • To use digitalWrite to turn LEDs on and off

  • Use digitalRead and / or attachInterrupts to find if a button has been pushed.

  • Use analogRead to find how much a potentiometer has been turned.

  • Use Servo.write to move a servo motor.

  • To create your own functions if they are going to be called repeatedly to save on code space.

  • Use a serial monitor to share data with a user.

For the final arduino project, you are going to design something physical which uses at least 3 of these concepts. You will create a 3D model of your item and include 3D components such as the arduino, servos, etc. You will not have to wire or code the circuit, but in addition to your 3D Model, you will need to share a google doc with me describing what your invention is used for and which of the above concepts it would include.

The goal of your invention is to make life easier for the person or people using your device.

So, the 4 steps to this project are:

  1. Before building any 3D models, start by brainstorming at list 10 ideas of things you could invent / make / modify using the skills you have. Add it to the start of the google doc you will share in a Brainstorming section.

  2. Once you decide on an invention, build it using the arduino components in Tinkercad's 3D design space.

  3. Write a Summary in your google doc describing what your invention is used for and which of the above concepts it would include.

  4. Share your doc with me.