Computer Science
Gilmour AcademyLancerTech
  • Our Curriculum and Department
  • Intro to Programming
    • 1: Parts of a Computer
    • 2: Parts of Python
    • 3: DRY Turtle
    • 4: Turtle Design App
    • Wordle with Turtles
    • 5: Interactive Turtles
    • OLD 5: Replit, GitHub, and repositories (Oh my!)
    • 6: Raspberry Pi / GoPiGo
    • 7: Kivy
  • Intro to Web Design
    • 1: Internet?
    • 2: Websites?
    • 3: Bootstrap Template
    • 4: Graphics and Branding
    • 5: Collaboration
    • 6: Advanced Editing
    • Publish Static HTML
  • AP Computer Science
    • 1: Logic & Instances
    • 2: How Java Works
    • 3: Data Types & Flow
    • 4: Strings
    • 5: Objects & References
    • 6: Inheritance & Algorithms
    • 7: Data Structures
    • 8: Sorting
    • 9: Review
    • Data Science
  • Web App Dev
    • 1: Core Concepts
    • 2: MVT Pattern
    • 3: Hello Flask
    • 4: Install Flaskinni
    • 5: Tour Flaskinni
    • 6: Visualize Your App
    • 7: Theme & Blueprint
    • 8: Standup Your DB
    • 9: Advanced Topics
    • 10: Deployment
  • 2D Game Design
    • Class Overview
    • Gamemaker Studio 2 and Github Setup
    • Game 1: Bouncing Ball
    • Turning in your games
    • Game 2: Maze
    • Game 3: Ping Pong
    • Game 4: Breakout
    • Game 5: Tank Battle
    • Game 6 Highlights
    • DO NOT DO:
    • Game 7: Final Project
    • Publish to Opera
    • FAQ
  • 3D Game Design
    • 1: Class Overview
    • 2: Installation
    • 3: Exploring the Unity UI
    • Game 1: Rolling Ball
    • Game 2: Tanks
    • Game 3: Third Person Platformer
    • Game 4: Final project
    • FAQs
    • OLD: Distance Learning Setup
    • OLD: GIT
  • 3D Modeling & Fabrication
    • Installation
    • Fusion 360 Interface and Sketch Modeling
    • Primitive Modeling
    • Patterns
    • Appearances and Rendering
    • Building Community Gallery Page 2023
    • Parametric Modeling
    • 3D Printing Concerns
    • Assemblies and Mechanical Design
    • Laser Cutting
    • Sculpt Tools
    • Milling Concerns
  • Robotics 7
    • Software Installation
    • Python basics (trinket.io)
    • Python Turtle
    • Programming for the Ev3
    • Setting up for clarity
  • Robotics 8
    • Replit
    • Python review
    • Kivy Basics
    • Calculator
  • Competitive Robotics
    • Hardware Team
      • CAD Examples
      • Elevators
    • Software Team
      • Command Pattern
      • Example Command
      • Subsystem
      • Running Your Code
      • Under the Hood
      • RoadRunner
      • Vision Processing
  • Archives
    • Adiletta Archives
      • Old Web
        • Ex: WordPress CMS
      • ItP
        • OLD: Parts of Python (old -- Mr. A)
        • OLD: 5: Raspberry Pi
        • OLD: 6: Deploying Code
        • OLD 7: Nav Algorithm
    • Vanek Archives
      • OLD Robotics 8
        • OLD: End of Class Project
      • OLD Competitive Robotics
        • Untitled
        • Webots Videos
      • OLD Robotics 7
        • Trinket Introduction
        • Lists: x/y position
        • Functions: Math program
        • Lists: Grocery List
        • Study Guide Program
        • Tic Tac Toe Game
        • Dice Roller Program
        • Visualization
        • Dice Roller + Visualization
        • OpenSCAD: Installation
        • OpenSCAD: Command Sheet and Intro
        • OpenSCAD: Difference
        • OpenSCAD: Variables
        • OpenSCAD: Union
        • OpenSCAD: For Loops
        • OpenSCAD: Final Project
      • OLD Art I - Blender Sculpting
        • Class Overview
        • Installation
        • Lesson 1 - Tools
        • Lesson 2 - Detail
        • Lesson 3 - Base Mesh: Metaballs
        • Lesson 4: Converting metaballs and adding detail
        • Lesson 5: Masking, Hiding, and Working with Multiple Objects
        • Lesson 6: Joining Objects & Basing
        • Lesson 7: Sculpture Painting
        • Student Gallery: Animal Sculpts
        • Lesson 8: 3D Compositon
        • Lesson 9: The Project - Putting it all together
        • Lesson 10: Developing the image further
        • Lesson 11: Layout the base metaball mesh.
        • Lesson 12: Final Detail
        • Lesson 13: Basing and Painting
        • Final Project Gallery
      • OLD Fab
        • OLD Building Community Project Gallery
        • Copy of Building Community Project Gallery
        • old Building Community Project Gallery
      • OLD: Turtle Design App
      • OLD Arduino Robotics 8
        • Arduino Basic Commands Cheat Sheet
        • Logging into Tinkercad
        • Arduino, Circuits, LEDs and Resistors
        • Functions and Variables
        • Serial Monitor
        • Buttons and Interrupts
        • Traffic Light Project
        • Potentiometers + Servos
        • Piezo Buzzer and Tone();
        • Sequencer Project
        • Arrays and for loops
        • Extra Loop Practice
        • Refining the Sequencer
        • Servos
        • Ultrasonic Sensors
        • Final Project
Powered by GitBook
On this page
  • Finished Game Overview
  • Building The Game
  • 0: Setup
  • 1: Camera Relative Controls
  • 2. Jumping
  • 3: Physics materials
  • 4: Intro to Animations
  • 5: Building Assets: Probuilder and MagicaVoxel
  • 6: Enemy AI
  • Assignment
  • Learning Targets

Was this helpful?

Export as PDF
  1. 3D Game Design

Game 3: Third Person Platformer

PreviousGame 2: TanksNextGame 4: Final project

Last updated 1 year ago

Was this helpful?

Finished Game Overview

Building The Game

0: Setup

1: Camera Relative Controls

2. Jumping

3: Physics materials

4: Intro to Animations

5: Building Assets: Probuilder and MagicaVoxel

6: Enemy AI

Assignment

1) Create five levels in which the player needs to explore in a controlled way. The level should have a start point and an end point. Think about how far / high characters can jump to keep parts blocked off.

Make sure you control how the players can progress through the level with terrain. You should use Probuilder, MagicaVoxel, or both to design your level. You can also use other resources such as physics materials.

2) Add at least one "hidden area" to your level.

3) Add at least one area which requires an item to progress.

4) Create one power up for your character (different than the progression item).

5) Use slime enemies in the environment. If your player touches a slime, restart the level (or if you are feeling like a bit of a challenge, make checkpoints and move the player to the last touched checkpoint).

6) Create at least one additional "humanoid" enemy complete with animations. Make sure the player can interact with the enemies in some way (attack, avoid, etc)

Learning Targets

MagicaVoxel:

http://www.voxelmade.com/magicavoxel/